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gravitational model proposed by the author (Stephenson 1969). Of perhaps greater 
significance is the fact that the dynamical nature of this gravitational model indicates 
a gravitational red-shift explanation of the varying red shifts that are observed to 
exist between individual members of related galaxies. Arp (1970) has shown that the 
different red shifts of the members of these galactic groups cannot arise solely from 
Doppler velocities and yet existing gravitational models do not predict sufficiently 
large gravitational red shifts to account for these observations. 

An extremely simple way of testing this proposal is to check whether the observed 
red shifts of the individual members of a related galactic group are inverseley pro- 
portional to the squares of the radii of the individual galaxies; such a variation would 
be expected from a first-order approximation of the suggested gravitational model, if 
constant angular momentum is assumed for each galaxy. 
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On the equations governing the second-order correlation 
functions for the velocity and the magnetic field of isotropic 
hydromagnetic turbulence in an incompressible fluid 

Abstract. By applying the Smirnov method one derives the equations des- 
cribing the correlation functions of the velocity and the magnetic field for an 
isotropic non-homogeneous hydromagnetic turbulence in an incompressible 
conducting fluid. 

The  statistical treatment of the theory of hydromagnetic turbulence involves an 
incomplete set of equations, whose number is less than the number of unknown 
functions (i.e. of all sorts of correlations). Supplementary arguments are to be im- 
posed in order to obtain a complete set of equations. 

Chandrasekhar (1955) formulated a deductive theory of isotropic homogeneous 
stationary hydromagnetic turbulence and obtained the equations for the second- 
order correlation functions of the velocity and the magnetic field respectively. 

Lee (1965) developed a new formulation of the theory of stationary hydromagnetic 
turbulence as a generalization of Wyld (1961) theory of ordinary turbulence. This 
formulation involves terms describing the external force. 
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Recently Smirnov (1970) obtained the equation for the second-order correlation 
functions of the velocity in ordinary isotropic non-stationary turbulence. Using a 
hydromagnetic generalization of the Smirnov method we deduced a pair of equations 
for the second-order correlation functions of the velocity and the magnetic field in a 
non-stationary isotropic hydromagnetic turbulence. 

The equations of motion for an incompressible conducting fluid in a magnetic 
field are: 

and 

where uf (i = 1,2,3)  denote the components of the velocity, h, the components of 
the magnetic field divided by ( 4 ~ p / p ) I ’ ~ ,  fi the components of the external force per 
unit mass, p the density, p the pressure and p, Y, U are the coefficients of magnetic 
permeability, kinematic viscosity and electrical conductivity respectively and 

1 P A = -  o =  

We consider the following correlation tensors : 
4npu’ P +*PI2 ‘ 

Qf, = (u,(r’, t’)u,(r’‘, t ” ) )  = (U{”,’’), H,, = (hi”,’’), G,, = (fz’u,”), 
P{$ = ( ~ ~ ’ U j ‘ ~ ” ) ,  n{j = (h{’hj‘w’’), Ti,,, (ui‘uj‘u<), 

S f , k  = <hi‘hj‘u<), d j , k  = (Ut’ujyZ >, F i j , k  <(ht’uj‘-u{‘hj‘)h<)~ 
Qij.lci = ( ~ i ’ u j ’ ~ k ’ ’ u i ’ ’  >, H t j . k i  = (h{’hj”k’’h’’ >, 
&j,k l  = ((h{’uj’~u{’hj’)(hk’’ul’’-u k l )  ”h ”) (3 ) 
where r’ and r” are the radius vectors of two neighbouring points; t’, t” are two in- 
stants of time and the angular brackets denote ensemble averages. 

By applying Smirnov’s method to equations (1) and (2) we obtain the following 
equations : 

aQ aH ($ -AD5) (L - AD,)H = 2QD5H+2HD,Q+2 - - 
al- ay  

( 5 )  

where Q(r, t‘, t”)H(r, t’, t”), G(r, t’, t”), i(r ,  t‘, t ” )  are the scalars defined by the 
correlation tensors Q,,, Hi,, etc., r = 1r”- r’l and D, = a2/8r2+(4/r)a/aris thefive- 
dimensional Laplacian operator. 

If the hydromagnetic turbulence is stationary, homogeneous and isotropic, the 
scalars Q, H, etc. depend on r and T = t”-  t‘. By splitting the correlation tensors in 
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even and odd parts with respect to the time 7, we find: 

- I(? -?D52 a a a aG, a a Q = 2Q-D5Q+2H-D5H+ -- -v-DD,G2+ - 
a y  aT2 ay ar ar aT a y  a y  

aQ 8H 
a y  ar 

H = 2QD5H + 2HDsQ + 2 - - (7) 
t 

where G,+G, = G ;  GI, G, are the odd and even parts respectively, and I2 is the 
even part of I. 

One immediately remarks that if we leave out the external force terms, the equa- 
tions (6), (7) reduce to Chandrasekhar’s equations. We conclude this letter by point- 
ing out that the equations deduced by us generalize the well-known equations for the 
second-order correlation functions for the velocity and the magnetic field. 
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The intensity fluctuation distribution of laser light 

Abstract. An experimental investigation of laser noise by measurement of 
photon-counting distributions over a range of sample times and pumping levels 
is reported. These results are compared with theoretical predictions and show 
good agreement. In addition a simple approximate expression for the second 
moment of the intensity fluctuations is given. 

I n  a recent paper Lax and Zwanziger (1970) computed the intensity fluctuation 
distribution of integrated laser light near threshold. They remarked that detailed 
measurements of p(m, T), the photon counting distribution for arbitrary sample time 
T, had not yet been reported though several workers have made measurements with 
short sample times (e.g. Freed and Haus 1966, Armstrong and Smith 1965, Arecchi 
et al. 1967, Chang et al. 1967, Pike 1969). In this letter we present a set of such 
detailed noise measurements for a Spectra Physics model 119 single-mode gas laser. 
Contact is made with the above computations through the factorial moments of 
p(m, T), which are the actual moments of the intensity fluctuation distribution. A 
simple approximate analytic expression for the second factorial moment is given which 
gives results indistinguishable from the full theory. We compare the experimental 
values for these moments with detailed results of Lax and Zwanziger (1970). 


